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1. Introduction 
 

It was presented algorithms for rack-gear tool’s profiling by Bezier 
polynomials for generation of straight line and circle arc profiles, belongs to an 
ordered profiles curl. 

These elementary profiles belong to composed profiles, which, are usually 
generated by rolling. 

They are frequent used profiles with variable curvature: involute profile (the 
involute of a circle with Rb radius) and trochoidal profiles. 

In paper is proposed an extension of the profiling method for the rack-gear 
tool and, from here, of the worm cutter tool for these profiles: involutes and 
trochoidal. 

 
 

2. Involute arc — Algorithm 
 
In the relative reference systems (see figure 1), are defined the parametrical 
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equations of the bR  radius circle involute: 

(1) 
( ) cos sin ;
( ) sin cos .

b b

b b

X R R
E

Y R R
θ θ θ θ

θ θ θ θ

= − ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅
 

The variation limits of the θ  parameter are established regarding the 
internal ( )iR  and external ( )eR  radii, between are extended the profile: 

(2) 
b

bi
A R

RR 22 −
=θ  and 

b

be
B R

RR 22 −
=θ . 

 
Fig. 1. – Involute arc profile associated with the rolling centrodes couple 

 
From the condition that the involute’s normal, 

(3) ( ):[ ( )] cos [ ( )]sin 0EN X X Y Yθ θ θ θ− − + − =
uuur

, 
must intersect with the rolling circle: 

(4) 1

cos ;
sin ,

X Rrp
C

Y Rrp
ϕ

ϕ
= − ⋅
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with ϕ  variable parameter, result the equation 

(5) arccos b

rp

R
R

ϕ θ
 

= + 
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representing the enwrapping condition. For a substitution polynomial of 3rd 
degree, are defined the values for the substitution curve poles coordinates, see 
table 1. 

Also, in the table 1, are presented the calculus relations for the 3rd degree 
Bezier polynomials coefficients, specifically for the considered elementary 
profile type. 

Table 1. 
Involute arc, 3rd degree approximation polynomial coefficients identification 

θ Primary profile Enwrapping condition 

θA 
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A b A b A A
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λ Points on the rack-gear profile Approximation polynomial 
coefficients 
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3. Trochoidal arc — Algorithm 
 
The trochoid described by a point M , from the r  rolling center, which 

rolling on the circle with radius R  has equations: 

(6) 
cos( ) ( )cos ;
sin( ) ( )sin ,

X r R r
Y r R r

θ ψ ψ
θ ψ ψ

= ⋅ + − +
Σ

= − ⋅ + + +
 

with 

(7) ψθ
r
R

=  

where ψ  is the variable angular parameter, measures on the circle with radius 
R. 

From intersection condition between the normal at Σ  trochoidal curve and 
the RRrp ≡  circle, 

(8) 0')]([')]([: =−+−Σ ψψ ψψ YYYXXXN , 

(9) 1

cos ;
sin ,

X Rrp
C

Y Rrp
ϕ

ϕ
= ⋅
= ⋅

 

with ϕ—parameter in the rolling movement, result the condition 
(10) ψϕ = . 

For A and B points on the trochoidal curve, results the enveloping 
approximation polynomial elements, see table 2 and figure 2. 

The profile substitution Bezier polynomial coefficients are determined as in 
the previous case, see table 1. 

The calculus relations of the 3rd degree approximation polynomial are the 
same as in table 1. 

 
Fig. 2. – Trochoidal arc profile associated with the rolling centrodes couple 
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Table 2. 

Trochoidal curve arc, 3rd degree approximation polynomial coefficients identification 
θ Primary profile Enwrapping 

condition 
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4. Numerical examples 

 
In figure 3 and table 3, are presented the form and coordinates for rack-gear 

tool’s reciprocally enveloping with an involute profile with [ 140,9;0]A − ; 
142iR = mm; 160eR = mm; 150bR = mm; 150R = mm. The maximum error is 

0.0208ε = mm. 
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Table 3 
 

Approximated tool profile Theoretical tool profile 
λ  ξ  [mm] η  [mm] ξ  [mm] η  [mm] 

Error 
[mm] 

ϕ  
[rad] 

0 11.6295 -2.7423 11.6295 -2.7423 0 -0.347 
0.05 7.3435 -1.1825 7.3255 -1.1759 0.0192 -0.2128 
0.3 1.0199 1.119 1.0237 1.1176 0.004 -0.017 

0.333 0.4518 1.3258 0.4518 1.3258 0 0.0009 
0.35 0.1625 1.4311 0.1683 1.4289 0.0062 0.0097 
0.65 -4.0114 2.9501 -4.0125 2.9505 0.0012 0.1399 
0.666 -4.2058 3.0209 -4.2058 3.0209 0 0.1458 
0.7 -4.6025 3.1653 -4.6071 3.167 0.005 0.1582 

0.95 -7.3109 4.151 -7.3113 4.1511 0.0004 0.2412 
1 -7.767 4.317 -7.767 4.317 0 0.2583 

 

 
Fig. 3 – Rack-gear approximation for involute profile 

 
In figure 4 and table 4, are presented the form and coordinates for rack-gear 

tool’s reciprocally enveloping with an trochoidal curve profile with [ 50;0]A − ; 
10r = mm; 50R = mm. The maximum error is 0.023ε = mm. 
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Fig. 4 – Rack-gear approximation for trochoidal profile 

 
Table 4 

Approximated tool profile Theoretical tool profile 
λ  ξ  [mm] η  [mm] ξ  [mm] η  [mm] 

Error 
[mm] 

ϕ  
[rad] 

0 0 0 0 0 0 0 
0.05 -0.266 0.0297 -0.2693 0.0239 0.0067 0.0449 

0.333 -1.7443 0.3613 -1.7443 0.3613 0 0.1189 
0.35 -1.8068 0.3807 -1.8059 0.3803 0.001 0.1263 

0.666 -3.4268 1.0113 -3.4268 1.0113 0 0.1663 
0.7 -3.547 1.067 -3.5464 1.0667 0.0006 0.1767 
1 -4.9216 1.7799 -4.9216 1.7799 0 0.2165 

 
5. Conclusions 

 
1. The presented method, although approximately, assure a good 

representation of the rack-gear tool’s profile reciprocally enveloping with an 
involute and trochoidal profiles, which may be part of a composed profiles to be 
generated. 

2. Software dedicated to this algorithm is an instrument which helps to 
apply this method. 
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PROFILAREA PRIN POLINOAME BEZIER A SCULEI-CREMALIERĂ 
 

PROFILURI EVOLVENTICE ŞI CICLOIDALE 
 

(Rezumat) 
 
 

În lucrare, se prezintă aplicaţii ale metodei de aproximare prin polinoame Bezier a 
profilurilor sculei-cremalieră generatoare înfăşurătoare a unor profiluri cu rază de curbură 
variabilă: evolventa cercului şi epicicloida. Se prezintă exemple numerice privind mărimea erorii 
de aproximare în raport cu profilurile cremalierei determinate în baza legilor fundamentale ale 
înfăşurării suprafeţelor, calculate cu ajutorul unui produs soft original dedicat acestei aplicaţii. 
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