NICOLAE OANCEA, VIRGIL TEODOR, IONUT POPA, VICTOR OANCEA
Department of Manufacturing Science and Engineering
University of "Dunărea de Jos", Galați
Domnească Street, no. 111, Galați
ROMANIA
virgil.teodor@ugal.ro http://www.ugal.ro/

An Efficient Approximate Profiling Method for the Rack Gear Tool

Abstract

This paper presents a simplified algorithm for the profiling of the rack gear tool to generate the active profile associated with rolling centrodes. The algorithm is based on the enveloping surfaces principles and reduces the computational problem by proposing an approximate representation of tool's profile using only 3 or 4 points on the profile to be generated by using Bezier representations of the surfaces. The algorithm computes the coefficients of a Bezier substitution polynomial instead of computing hundreds of points on the active profile. This simplifies the solution methodology and requires only a limited number of points along the profile to be generated. The algorithm is computationally efficient and can also be used in the case when the active profile to be generated is physically measured at a few points. Examples include mill tools, splined shafts and gears.

Key-Words: - Bezier substitution polynomial, tool profiling, approximate profiling method

1. Introduction

The vectorial or analytical representation of active surface profiles is widely used in engineering practice. Very often, these surfaces are approximately represented in forms that are suitable for numerical computations. For technological purposes, the surface representation of the active profiles is typically determined by accuracy needs in the manufacturing process. This is particularly the case for surfaces generated from enwrapping principles when typical representations include: description by poles; generation by surfaces enwrapping Litvin [1] and Radzevich [7]; based on the generating fundamentals theorems

Olivier and Gohman [1, 7]; or on complementary theorems Oancea [5], [6] and Teodor [8]. The method proposed in this paper uses a representation of the profiles via a polynomial description as illustrated in Favrolles [3]. The polynomials are characterized primarily by the polynomial degree and the desire to describe the profile via a significantly smaller number of points on the conjugated profiles that would normally be feasible via classical methods. In addition, the representation errors on the conjugated profiles (both on the blank profile and on the tool profile) have to be bounded by an upper limit value that was predetermined according to the technological criteria of the generated profile.

Reference solutions are also constructed using previously published generation methods derived
from surface enwrapping theorems. Comparisons between this new and these fundamental methods are performed to demonstrate the viability of the new method. Specific examples are illustrated for various profile shapes and generation kinematics. The algorithm determines the profile error for the generating profile with tools associated with rolling centrodes of elementary profiles on the workpiece.

2. Generation of a straight line profile using a rack-gear

Let's examine first the errors obtained in the rack-gear tool reciprocally enveloping with a straight line segment which belongs to a profile associated with a centrode with radius $R_{r p}$ as shown in figure 1 .

Fig. 1 - Straight line profile $A B\left(C_{1}, C_{2}\right.$, rolling centrodes); a) for 3 points-A, $C, B ; b$) for 4 pointsA, B, C, D.

The following reference systems are used:
$X Y$ - the relative space associated with the blank;
$\xi \eta$ - relative reference system joined with the rack-gear tool;
$x y$ - global reference system.
The coordinates of the straight line ends, in the $X Y$
reference system are:

$$
\begin{equation*}
A\left[X_{A}, Y_{A}\right] ; B\left[X_{B}, Y_{B}\right] \text { and } \tan (\alpha)=\frac{\left|Y_{B}-Y_{A}\right|}{\left|X_{B}-X_{A}\right|} . \tag{1}
\end{equation*}
$$

The analytical representation of the profile is:

$$
\Delta \begin{gather*}
X(u)=X_{A}+u \cdot \cos \alpha ; \tag{2}\\
Y(u)=Y_{A}+u \cdot \sin \alpha ;
\end{gather*}
$$

with u a variable parameter; $u_{\text {min }}=0$ and $u_{\text {max }}=\sqrt{\left(X_{A}-X_{B}\right)^{2}+\left(Y_{A}-Y_{B}\right)^{2}}$.
The relative motion of the $X Y$ and $\xi \eta$ reference
systems may be described by

$$
\left[\begin{array}{l}
\xi \tag{3}\\
\eta
\end{array}\right]=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right] \cdot\left[\begin{array}{c}
X_{A}+u \cdot \cos \alpha \\
Y_{A}+u \cdot \sin \alpha
\end{array}\right]-\left[\begin{array}{c}
-R_{r p} \\
-R_{r p} \cdot \varphi
\end{array}\right],(
$$

to generate the profile family:

$$
(\Delta)_{\varphi} \left\lvert\, \begin{align*}
& \xi=X(u) \cos \varphi-Y(u) \sin \varphi+R_{r p} ; \tag{4}\\
& \eta=X(u) \sin \varphi+Y(u) \cos \varphi+R_{r p} \cdot \varphi .
\end{align*}\right.
$$

The envelope of this family represents the rack-gear tool's profile in the rolling movement of the two centrodes.
The parametric equations (4) allow for the determination of the coordinates of points belonging to the rack-gear tool's profile by varying the u parameter between given bounds.
For $u=0$, the coordinates of point A on the rack-gear tool profile $\left[\xi_{A}, \eta_{A}\right]$ are:

$$
\begin{align*}
& \xi_{A}=X_{A} \cos \varphi_{A}-Y_{A} \sin \varphi_{A}+R_{r p} ; \\
& \eta_{A}=X_{A} \sin \varphi_{A}+Y_{A} \cos \varphi_{A}+R_{r p} \cdot \varphi_{A}, \tag{5}
\end{align*}
$$

where φ_{A} is the value of the φ parameter corresponding to point A on the profile to be generated.
Similarly, for $u=u_{\text {max }}$ the coordinates on the rack-gear profile corresponding to point $B\left[\xi_{B}, \eta_{B}\right]$
are:

$$
\begin{align*}
& \xi_{B}=X_{B} \cos \varphi_{B}-Y_{B} \sin \varphi_{B}+R_{r p} ; \\
& \eta_{B}=X_{B} \sin \varphi_{B}+Y_{B} \cos \varphi_{B}+R_{r p} \cdot \varphi_{B}, \tag{6}
\end{align*}
$$

where φ_{B} is the value of the parameter φ corresponding to point B on the profile to be generated.
According to the Willis theorem [1] at the ends of the segment Δ corresponding to the parameter
values, φ_{A} and φ_{B}, the normal to the profile must intersect the associated centrode. Thus, knowing the normal to the profile to be generated as

$$
\begin{equation*}
[X-X(u)] X^{\prime}{ }_{u}+[Y-Y(u)] Y^{\prime}{ }_{u}=0 \tag{7}
\end{equation*}
$$

and the circular centrode equations:

$$
\begin{equation*}
X=R_{r p} \cdot \cos \varphi ; Y=R_{r p} \cdot \sin \varphi, \tag{8}
\end{equation*}
$$

allow for the determination of the values of the angles corresponding to the characteristic points of the $A B$ segment:

$$
\begin{equation*}
\varphi_{A}=\arccos \left(\frac{X_{A} \cos \alpha+Y_{A} \sin \alpha}{R_{r p}}\right)+\alpha \tag{9}
\end{equation*}
$$

and $\quad \varphi_{B}=\arccos \left(\frac{X_{B} \cos \alpha+Y_{B} \sin \alpha}{R_{r p}}\right)+\alpha$.
Similarly, one can define the corresponding angle for other points on the profile to be generated. For a particular choice of $u=0.5 \cdot u_{\text {max }}$, at point C :

$$
\left\lvert\, \begin{align*}
& X_{C}=0.5 \cdot X_{A}+0.5 \cdot X_{B} \tag{11}\\
& Y_{C}=0.5 \cdot Y_{A}+0.5 \cdot Y_{B} .
\end{align*}\right.
$$

And so the coordinates of point belonging to the rack-gear profile are:

$$
\begin{align*}
& \xi_{C}=X_{C} \cos \varphi_{C}-Y_{C} \sin \varphi_{C}+R_{r p} ; \tag{12}\\
& \eta_{C}=X_{C} \sin \varphi_{C}+Y_{C} \cos \varphi_{C}+R_{r p} \cdot \varphi_{C} \tag{13}
\end{align*}
$$

The three-point assembly, A, C and B, determine the profile (5) expressed in the following tabular form:

u dimensional parameter	Work Piece profile	Enveloping condition	λ dimensionless parameter	Tool profile		
	X				ξ^{2}	η_{A}
$u=0$	X_{A}	Y_{A}	$\operatorname{see}(9)$	$\lambda=0$	ξ_{A}	η_{A}
$u=(1 / 2) \cdot u_{\max }$	X_{C}	Y_{C}	$\operatorname{see}(13)$	$\lambda=1 / 2$	ξ_{C}	η_{C}
$u=u_{\max }$	X_{B}	Y_{B}	$\operatorname{see}(10)$	$\lambda=1$	ξ_{B}	η_{B}

(14)

From the representation (14), one can construct an approximated polynomial representation of the tool's profile using a second order polynomial:

$$
\begin{align*}
& \xi=\lambda^{2} \cdot A_{\xi}+2 \lambda(1-\lambda) \cdot C_{\xi}+(1-\lambda)^{2} \cdot B_{\xi} ; \\
& \eta=\lambda^{2} \cdot A_{\eta}+2 \lambda(1-\lambda) \cdot C_{\eta}+(1-\lambda)^{2} \cdot B_{\eta}, \tag{15}
\end{align*}
$$

where $\quad A_{\xi}, A_{\eta}, C_{\xi}, C_{\eta}, B_{\xi}, B_{\eta}$, are polynomial coefficients computed as illustrated in table 1, from the equations system defined from (15), for various values of λ parameter $(0 ; 0.5 ; 1)$.

Table 1. Straight line segment, $2^{\text {nd }}$ degree approximation polynomial coefficients identification

u	Primary profile	Enwrapping condition
0	X_{A}, Y_{A}	$\varphi_{A}=\arccos \left(\frac{X_{A} \cos \alpha+Y_{A} \sin \alpha}{R_{r p}}\right)+\alpha$
$\begin{gathered} 0.5 \\ \mathbf{u}_{\max } \end{gathered}$	$\begin{aligned} & X_{C}=0.5 \cdot X_{A}+0.5 \cdot X_{B} \\ & Y_{C}=0.5 \cdot Y_{A}+0.5 \cdot Y_{B} \end{aligned}$	$\varphi_{C}=\arccos \left(\frac{X_{C} \cos \alpha+Y_{C} \sin \alpha}{R_{r p}}\right)+\alpha$
$\mathrm{u}_{\text {max }}$	X_{B}, Y_{B}	$\varphi_{B}=\arccos \left(\frac{X_{B} \cos \alpha+Y_{B} \sin \alpha}{R_{r p}}\right)+\alpha$
λ	Points on rack-gear profile	Approximation polynomial coefficients
1	$\begin{aligned} & \xi_{A}=X_{A} \cos \varphi_{A}-Y_{A} \sin \varphi_{A}+R_{r p} \\ & \eta_{A}=X_{A} \sin \varphi_{A}+Y_{A} \cos \varphi_{A}+R_{r p} \cdot \varphi_{A} \end{aligned}$	$\begin{aligned} & A_{\xi}=\xi_{A} \\ & A_{\eta}=\eta_{A} \end{aligned}$
0.5	$\begin{aligned} & \xi_{C}=X_{C} \cos \varphi_{C}-Y_{C} \sin \varphi_{C}+R_{r p} \\ & \eta_{C}=X_{C} \sin \varphi_{C}+Y_{C} \cos \varphi_{C}+R_{r p} \cdot \varphi_{C} \end{aligned}$	$\begin{aligned} & C_{\xi}=\left(\xi_{C}-0.25 \cdot \xi_{A}-0.25 \cdot \xi_{B}\right) \cdot(1 / 0.5) \\ & C_{\eta}=\left(\eta_{C}-0.25 \cdot \eta_{A}-0.25 \cdot \eta_{B}\right) \cdot(1 / 0.5) \end{aligned}$
0	$\begin{aligned} \xi_{B} & =X_{B} \cos \varphi_{B}-Y_{B} \sin \varphi_{B}+R_{r p} \\ \eta_{B} & =X_{B} \sin \varphi_{B}+Y_{B} \cos \varphi_{B}+R_{r p} \cdot \varphi_{B} \end{aligned}$	$\begin{aligned} & B_{\xi}=\xi_{B} \\ & B_{\eta}=\eta_{B} \end{aligned}$

When the points on the initial profile are known by direct physical measuring, the parameter λ may be calculated with the simple relation

$$
\begin{equation*}
\lambda=|\overline{A C}| /|\overline{A B}| . \tag{16}
\end{equation*}
$$

Similarly, if a $3^{\text {rd }}$ degree polynomial is used, one can write:

$$
\begin{align*}
& \xi=\lambda^{3} \cdot A_{\xi}+3 \lambda^{2}(1-\lambda) \cdot B_{\xi}+ \\
& +3 \lambda(1-\lambda)^{2} \cdot C_{\xi}+(1-\lambda)^{3} \cdot D_{\xi} ; \tag{17}\\
& \eta=\lambda^{3} \cdot A_{\eta}+3 \lambda^{2}(1-\lambda) \cdot B_{\eta}+ \\
& +3 \lambda(1-\lambda)^{2} \cdot C_{\eta}+(1-\lambda)^{3} \cdot D_{\eta},
\end{align*}
$$

Table 2. Straight line segment, $3^{\text {rd }}$ degree approximation polynomial coefficients identification

u	Primary profile	Enwrapping condition
0	X_{A}, Y_{A}	$\varphi_{A}=\arccos \left(\frac{X_{A} \cos \alpha+Y_{A} \sin \alpha}{R_{r p}}\right)+\alpha$
$1 / 3 \mathrm{u}_{\text {max }}$	$\begin{aligned} & X_{B}=X_{A}+\frac{1}{3}\left(X_{B}-X_{A}\right) \\ & Y_{B}=Y_{A}+\frac{1}{3}\left(Y_{B}-Y_{A}\right) \end{aligned}$	$\varphi_{B}=\arccos \left(\frac{X_{B} \cos \alpha+Y_{B} \sin \alpha}{R_{r p}}\right)+\alpha$
$2 / 3 \mathrm{u}_{\text {max }}$	$\begin{aligned} & X_{C}=X_{A}+\frac{2}{3}\left(X_{B}-X_{A}\right) \\ & Y_{C}=Y_{A}+\frac{2}{3}\left(Y_{B}-Y_{A}\right) \end{aligned}$	$\varphi_{C}=\arccos \left(\frac{X_{C} \cos \alpha+Y_{C} \sin \alpha}{R_{r p}}\right)+\alpha$
$\mathrm{u}_{\text {max }}$	X_{D}, Y_{D}	$\varphi_{D}=\arccos \left(\frac{X_{D} \cos \alpha+Y_{D} \sin \alpha}{R_{r p}}\right)+\alpha$
λ	Points on rack-gear tool's profile	Approximation polynomial coefficients
0	$\begin{aligned} & \xi_{A}=X_{A} \cos \varphi_{A}-Y_{A} \sin \varphi_{A}+R_{r p} \\ & \eta_{A}=X_{A} \sin \varphi_{A}+Y_{A} \cos \varphi_{A}+R_{r p} \cdot \varphi_{A} \end{aligned}$	$\begin{aligned} & D_{\xi}=\xi_{A} \\ & D_{\eta}=\eta_{A} \end{aligned}$
1/3	$\begin{aligned} & \xi_{B}=X_{B} \cos \varphi_{B}-Y_{B} \sin \varphi_{B}+R_{r p} \\ & \eta_{B}=X_{B} \sin \varphi_{B}+Y_{B} \cos \varphi_{B}+R_{r p} \cdot \varphi_{B} \end{aligned}$	$\begin{aligned} & B_{\xi}=\frac{18 \cdot \xi_{C}-9 \cdot \xi_{B}+2 \cdot \xi_{A}-5 \cdot \xi_{D}}{6} \\ & B_{\eta}=\frac{18 \cdot \eta_{C}-9 \cdot \eta_{B}+2 \cdot \eta_{A}-5 \cdot \eta_{D}}{6} \end{aligned}$
2/3	$\begin{aligned} & \xi_{C}=X_{C} \cos \varphi_{C}-Y_{C} \sin \varphi_{C}+R_{r p} \\ & \eta_{C}=X_{C} \sin \varphi_{C}+Y_{C} \cos \varphi_{C}+R_{r p} \cdot \varphi_{C} \end{aligned}$	$\begin{aligned} & C_{\xi}=\frac{-5 \cdot \xi_{A}+2 \cdot \xi_{D}+18 \cdot \xi_{B}-9 \cdot \xi_{C}}{6} \\ & C_{\eta}=\frac{-5 \cdot \eta_{A}+2 \cdot \eta_{D}+18 \cdot \eta_{B}-9 \cdot \eta_{C}}{6} \end{aligned}$
1	$\begin{aligned} & \xi_{D}=X_{D} \cos \varphi_{D}-Y_{D} \sin \varphi_{D}+R_{r p} \\ & \eta_{D}=X_{D} \sin \varphi_{D}+Y_{D} \cos \varphi_{D}+R_{r p} \cdot \varphi_{D} \end{aligned}$	$\begin{aligned} & A_{5}=\xi_{D} \\ & A_{\eta}=\eta_{D} \end{aligned}$

2.1. Theoretical method and computational error

It is paramount to assess the profiling error of the rack-gear tool via the approximated method above by obtaining a solution using classical analytical methods as illustrated in [8].
For the profiles family described in (4), the enwrapping condition [1], [6] can be written as:

$$
\begin{equation*}
\frac{\xi_{u}^{\prime}}{\xi_{\varphi}^{\prime}}=\frac{\eta_{u}^{\prime}}{\eta_{\varphi}^{\prime}}, \tag{18}
\end{equation*}
$$

where, $\xi_{u}^{\prime}{ }_{u} \xi^{\prime}{ }_{\varphi}, \eta^{\prime}{ }_{u}, \eta^{\prime}{ }_{\varphi}$ are partial derivatives of the profiles family equations (4) with respect to the variable parameters:

$$
\begin{align*}
& \xi_{u}^{\prime}=\cos (\alpha+\varphi) ; \\
& \eta_{{ }_{u}}^{\prime}=\sin (\alpha+\varphi) ; \\
& \xi_{\varphi}^{\prime}=-\left(X_{A}+u \cdot \cos \alpha\right) \cdot \sin \varphi- \\
& -\left(Y_{A}+u \cdot \sin \alpha\right) \cdot \cos \varphi ; \tag{19}\\
& \eta_{\varphi}^{\prime}=\left(X_{A}+u \cdot \cos \alpha\right) \cdot \cos \varphi- \\
& -\left(Y_{A}+u \cdot \sin \alpha\right) \cdot \sin \varphi+R_{r p} .
\end{align*}
$$

Together with the family equations (4) and the enwrapping condition, one can define in the reference system $\xi \eta$, the rack-gear tool's profile reciprocally enwrapping with the profile to be generated (2).
Since the u parameter can be varied between the following limits:
$u_{\text {min }}=0$ and $u_{\text {max }}=\sqrt{\left(X_{B}-X_{A}\right)^{2}+\left(Y_{B}-Y_{A}\right)^{2}}$,
the rack-gear profile can be expressed by the coordinates matrix (a large number of points on the active profile):

$$
S=\left[\begin{array}{l}
\xi_{1} \eta_{1} \tag{21}\\
\mathrm{M} \\
\xi_{i} \eta_{i} \\
\mathrm{M} \\
\xi_{n} \eta_{n}
\end{array}\right] .
$$

The goal is to establish the maximum error value of the approximated profile at given points relative to the profile (21) obtained using classical algorithms.

Fig. 2 - Relative position of theoretical $-\mathrm{S}_{\mathrm{T}}$ and approximate $-\mathrm{S}_{\mathrm{A}}$ profiles

For two successive points from the theoretical profile $M_{i}\left[\xi_{i}, \eta_{i}\right]$ and $M_{i+1}\left[\xi_{i+1}, \eta_{i+1}\right]$, the profile may be replaced with the $\overline{M_{i} M_{i+1}}$ segment expressed as:

$$
\begin{align*}
\xi & =\xi_{i}-t \cdot \cos \beta_{i} ; \\
\eta & =\eta_{i}+t \cdot \sin \beta_{i}, \tag{22}
\end{align*}
$$

with

$$
\begin{equation*}
\tan \beta=\left|\frac{\eta_{i+1}-\eta_{i}}{\xi_{i+1}-\xi_{i}}\right| \tag{23}
\end{equation*}
$$

and t a variable parameter.
The normal to the $\left[M_{i}, M_{i+1}\right.$] segment can be written as:

$$
\begin{equation*}
N_{S T}:-\left(\xi-\xi_{i}\right) \cos \beta_{i}+\left(\eta-\eta_{i}\right) \sin \beta_{i}=0 . \tag{24}
\end{equation*}
$$

The distance measured along the normal, at the point on the approximated profile (15), determine the error value of the i point on the analytical profile. In this way, if we label $\xi_{A_{i}}, \eta_{A_{i}}$ the coordinates of intersection point between the normal $\overrightarrow{N_{S T}}$ and one of the approximation curves, the error value in the M_{i} point is defined as:

$$
\begin{equation*}
\delta=\sqrt{\left(\xi_{A_{i}}-\xi_{i}\right)^{2}+\left(\eta_{A_{i}}-\eta_{i}\right)^{2}} . \tag{25}
\end{equation*}
$$

By increasing the order of the Bezier approximation polynomial, the error δ is expected to decrease. The numerical examples below demonstrate this observation. Moreover, the approximation polynomials of $2^{\text {nd }}$ or $3^{\text {rd }}$ degree lead to errors which are acceptable in most engineering practice.

3. Generation of a circular arc with a rack-gear tool

Consider next the case of generation of a circular arc profile using a rack-gear tool as shown in figure 3.

Fig. 3-Circular profile associated with the rolling centrodes couple: a). for 3 characteristic points; b). for 4 characteristic points; C_{1} piece's centrode, C_{2} tool's centrode.

The circular arc is defined using the two end points, $A\left[X_{A}, Y_{A}\right]$ and $B\left[X_{B}, Y_{B}\right]$ and the radius r. The circle's center $O_{C}\left[X_{C}, Y_{C}\right]$ can then be easily determined.

The circle's parametric equations (the primary profile to be generated) can be written as:

$$
C \left\lvert\, \begin{align*}
& X(\theta)=X_{o_{c}}+r \cdot \cos \theta \tag{26}\\
& Y(\theta)=Y_{O_{C}}-r \cdot \sin \theta
\end{align*}\right.
$$

with θ variable parameter between the limits

Table 3. Circular arc, approximation polynomial of $2^{\text {nd }}$ degree coefficients identification

$\boldsymbol{\theta}$	Primary profile	Enwrapping condition
$\theta_{\text {A }}$	$\begin{aligned} & X_{A}=X_{O_{C}}+r \cdot \cos \theta_{A} \\ & Y_{A}=Y_{O_{C}}-r \cdot \sin \theta_{A} \end{aligned}$	$\varphi_{A}=\arcsin \left(\frac{X_{A} \sin \theta_{A}+Y_{A} \cos \theta_{A}}{R_{r p}}\right)-\theta_{A}$
$\theta_{\text {c }}$	$\begin{aligned} & \theta_{C}=\theta_{A}+\left(\theta_{B}-\theta_{A}\right) / 2 \\ & X_{A}=X_{O_{C}}+r \cdot \cos \theta_{C} \\ & Y_{A}=Y_{O_{C}}-r \cdot \sin \theta_{C} \end{aligned}$	$\varphi_{C}=\arcsin \left(\frac{X_{C} \sin \theta_{C}+Y_{C} \cos \theta_{C}}{R_{r p}}\right)-\theta_{C}$
$\theta_{\text {B }}$	$\begin{aligned} & X_{B}=X_{O_{C}}+r \cdot \cos \theta_{B} \\ & Y_{B}=Y_{O_{C}}-r \cdot \sin \theta_{B} \end{aligned}$	$\varphi_{B}=\arcsin \left(\frac{X_{B} \sin \theta_{B}+Y_{B} \cos \theta_{B}}{R_{r p}}\right)-\theta_{B}$
λ	Points on the rack-gear profile	Approximation polynomial coefficients
1	$\begin{aligned} & \xi_{A}=X_{A} \cos \varphi_{A}-Y_{A} \sin \varphi_{A}+R_{r p} \\ & \eta_{A}=X_{A} \sin \varphi_{A}+Y_{A} \cos \varphi_{A}+R_{r p} \cdot \varphi_{A} \end{aligned}$	$\begin{aligned} & A_{\xi}=\xi_{A} \\ & A_{\eta}=\eta_{A} \end{aligned}$
0.5	$\begin{aligned} & \xi_{C}=X_{C} \cos \varphi_{C}-Y_{C} \sin \varphi_{C}+R_{r p} \\ & \eta_{C}=X_{C} \sin \varphi_{C}+Y_{C} \cos \varphi_{C}+R_{r p} \cdot \varphi_{C} \end{aligned}$	$\begin{aligned} & C_{\xi}=\left(\xi_{C}-0.25 \cdot \xi_{A}-0.25 \cdot \xi_{B}\right) / 0.5 \\ & C_{\eta}=\left(\eta_{C}-0.25 \cdot \eta_{A}-0.25 \cdot \eta_{B}\right) / 0.5 \end{aligned}$
0	$\begin{aligned} & \xi_{B}=X_{B} \cos \varphi_{B}-Y_{B} \sin \varphi_{B}+R_{r p} \\ & \eta_{B}=X_{B} \sin \varphi_{B}+Y_{B} \cos \varphi_{B}+R_{r p} \cdot \varphi_{B} \end{aligned}$	$\begin{aligned} & B_{\xi}=\xi_{B} \\ & B_{\eta}=\eta_{B} \end{aligned}$

Table 4. Circle arc, approximation polynomial of $3^{\text {rd }}$ degree coefficients identification

θ	Primary profile	Enwrapping condition
$\theta_{\text {A }}$	$\begin{aligned} & X_{A}=X_{O_{C}}+r \cdot \cos \theta_{A} \\ & Y_{A}=Y_{O_{C}}-r \cdot \sin \theta_{A} \end{aligned}$	$\varphi_{A}=\arcsin \left(\frac{X_{A} \sin \theta_{A}+Y_{A} \cos \theta_{A}}{R_{r p}}\right)-\theta_{A}$
θ_{B}	$\begin{aligned} & \theta_{B}=\theta_{A}+\left(\theta_{D}-\theta_{A}\right) / 3 \\ & X_{B}=X_{O_{C}}+r \cdot \cos \theta_{B} \\ & Y_{B}=Y_{O_{C}}-r \cdot \sin \theta_{B} \end{aligned}$	$\varphi_{B}=\arcsin \left(\frac{X_{B} \sin \theta_{B}+Y_{B} \cos \theta_{B}}{R_{r p}}\right)-\theta_{B}$
$\theta_{\text {c }}$	$\begin{aligned} & \theta_{C}=\theta_{A}+2 \cdot\left(\theta_{D}-\theta_{A}\right) / 3 \\ & X_{C}=X_{O_{C}}+r \cdot \cos \theta_{C} \\ & Y_{C}=Y_{O_{C}}-r \cdot \sin \theta_{C} \end{aligned}$	$\varphi_{C}=\arcsin \left(\frac{X_{C} \sin \theta_{C}+Y_{C} \cos \theta_{C}}{R_{r p}}\right)-\theta_{C}$
$\theta_{\text {D }}$	$\begin{aligned} & X_{D}=X_{O_{C}}+r \cdot \cos \theta_{D} \\ & Y_{D}=Y_{O_{C}}-r \cdot \sin \theta_{D} \end{aligned}$	$\varphi_{D}=\arcsin \left(\frac{X_{D} \sin \theta_{D}+Y_{D} \cos \theta_{D}}{R_{r p}}\right)-\theta_{D}$
λ	Points on the rack-gear profile	Approximation polynomial coefficients
0	$\begin{aligned} & \xi_{A}=X_{A} \cos \varphi_{A}-Y_{A} \sin \varphi_{A}+R_{r p} \\ & \eta_{A}=X_{A} \sin \varphi_{A}+Y_{A} \cos \varphi_{A}+R_{r p} \cdot \varphi_{A} \end{aligned}$	$\begin{aligned} & D_{\xi}=\xi_{A} \\ & D_{\eta}=\eta_{A} \end{aligned}$
1/3	$\begin{aligned} \xi_{B} & =X_{B} \cos \varphi_{B}-Y_{B} \sin \varphi_{B}+R_{r p} \\ \eta_{B} & =X_{B} \sin \varphi_{B}+Y_{B} \cos \varphi_{B}+R_{r p} \cdot \varphi_{B} \end{aligned}$	$\begin{aligned} & B_{\xi}=\left(18 \cdot \xi_{C}-9 \cdot \xi_{B}+2 \cdot \xi_{A}-5 \cdot \xi_{D}\right) / 6 \\ & B_{\eta}=\left(18 \cdot \eta_{C}-9 \cdot \eta_{B}+2 \cdot \eta_{A}-5 \cdot \eta_{D}\right) / 6 \end{aligned}$
2/3	$\begin{aligned} & \xi_{C}=X_{C} \cos \varphi_{C}-Y_{C} \sin \varphi_{C}+R_{r p} \\ & \eta_{C}=X_{C} \sin \varphi_{C}+Y_{C} \cos \varphi_{C}+R_{r p} \cdot \varphi_{C} \end{aligned}$	$\begin{aligned} & C_{\xi}=\left(-5 \cdot \xi_{A}+2 \cdot \xi_{D}+18 \cdot \xi_{B}-9 \cdot \xi_{C}\right) / 6 \\ & C_{\eta}=\left(-5 \cdot \eta_{A}+2 \cdot \eta_{D}+18 \cdot \eta_{B}-9 \cdot \eta_{C}\right) / 6 \end{aligned}$
1	$\begin{aligned} & \xi_{D}=X_{D} \cos \varphi_{D}-Y_{D} \sin \varphi_{D}+R_{r p} \\ & \eta_{D}=X_{D} \sin \varphi_{D}+Y_{D} \cos \varphi_{D}+R_{r p} \cdot \varphi_{D} \end{aligned}$	$\begin{aligned} & A_{\zeta}=\xi_{D} \\ & A_{\eta}=\eta_{D} \end{aligned}$

4. Profiling an involute arc using a rack-gear tool

In figure 4 the coordinate systems associated with the workpiece and the tool for the manufacturing of an involute profile are shown. The parametrical equations of the involute with a radius circle R_{b} are:

$$
E \left\lvert\, \begin{align*}
& X(\theta)=-R_{b} \cdot \cos \theta-R_{b} \cdot \theta \cdot \sin \theta \tag{32}\\
& Y(\theta)=R_{b} \cdot \sin \theta-R_{b} \cdot \theta \cdot \cos \theta
\end{align*}\right.
$$

The variation limits of the θ parameter are established based on the internal $\left(R_{i}\right)$ and the external $\left(R_{e}\right)$ radii between which the profile extends:

$$
\begin{equation*}
\theta_{A}=\frac{\sqrt{R_{i}^{2}-R_{b}{ }^{2}}}{R_{b}} \text { and } \theta_{B}=\frac{\sqrt{R_{e}{ }^{2}-R_{b}{ }^{2}}}{R_{b}} . \tag{33}
\end{equation*}
$$

Fig. 4 - Involute arc profile associated with the rolling centrodes couple

From the condition that the normal at the involute,
$N_{E}:[X-X(\theta)](-\cos \theta)+[Y-Y(\theta)] \sin \theta=0$, must intersect the rolling circle:

$$
C_{1} \left\lvert\, \begin{align*}
& X=-R_{r p} \cdot \cos \varphi ; \tag{35}\\
& Y=R_{r p} \cdot \sin \varphi,
\end{align*}\right.
$$

where φ is a continuous variable parameter, one obtains the equation

$$
\begin{equation*}
\varphi=\arccos \left(\frac{R_{b}}{R_{r p}}\right)+\theta \tag{36}
\end{equation*}
$$

representing the Willis enwrapping condition [1]. Equations (4), (32) and (36) represent the rack-gear tool's theoretical profile.

When a third degree polynomial is used to approximate the tool's profile, the enwrapping condition is illustrated in table 5 , for only 4 points on involute.

Table 5. Points belongs to the involute profile; enwrapping condition

θ	λ	Primary profile	Enwrapping condition
$\theta_{\text {A }}$	0	$\begin{aligned} & X_{A}=-R_{b} \cdot \cos \theta_{A}- \\ & -R_{b} \cdot \theta_{A} \cdot \sin \theta_{A} \\ & Y_{A}=R_{b} \cdot \sin \theta_{A}- \\ & -R_{b} \cdot \theta_{A} \cdot \cos \theta_{A} \\ & \hline \end{aligned}$	$\varphi_{A}=\arccos \left(\frac{R_{b}}{R_{r p}}\right)+\theta_{A}$
$\theta_{\text {B }}$	$\frac{1}{3}$	$\begin{aligned} & \theta_{B}=\theta_{A}+\frac{\theta_{D}-\theta_{A}}{3} \\ & X_{B}=-R_{b} \cdot \cos \theta_{B}- \\ & -R_{b} \cdot \theta_{B} \cdot \sin \theta_{B} \\ & Y_{B}=R_{b} \cdot \sin \theta_{B}- \\ & -R_{b} \cdot \theta_{B} \cdot \cos \theta_{B} \end{aligned}$	$\varphi_{B}=\arccos \left(\frac{R_{b}}{R_{r p}}\right)+\theta_{B}$
θ_{C}	$\frac{2}{3}$	$\begin{aligned} & \theta_{C}=\theta_{A}+2 \frac{\theta_{D}-\theta_{A}}{3} \\ & X_{C}=-R_{b} \cdot \cos \theta_{C}- \\ & -R_{b} \cdot \theta_{C} \cdot \sin \theta_{C} \\ & Y_{C}=R_{b} \cdot \sin \theta_{C}- \\ & -R_{b} \cdot \theta_{C} \cdot \cos \theta_{C} \end{aligned}$	$\varphi_{C}=\arccos \left(\frac{R_{b}}{R_{r p}}\right)+\theta_{C}$
$\theta_{\text {D }}$	1	$\begin{aligned} & X_{D}=X_{O_{C}}+ \\ & +r \cdot \cos \theta_{D} \\ & Y_{D}=Y_{O_{C}}- \\ & -r \cdot \sin \theta_{D} \end{aligned}$	$\varphi_{D}=\arccos \left(\frac{R_{b}}{R_{r p}}\right)+\theta_{D}$

Note: The calculation of points belonging to the approximated rack-gear profile is identical with the calculations presented in table 4.

5. Rack-gear profiling for a trochoid arc

5.1. Theoretical model

The trochoid described by a generic point M belonging to the circle r rolling on the circle with radius R has the following equations:
where

$$
\Sigma \left\lvert\, \begin{align*}
& X=r \cdot \cos (\theta+\psi)-(R+r) \cos \psi ; \tag{37}\\
& Y=-r \cdot \sin (\theta+\psi)+(R+r) \sin \psi,
\end{align*}\right.
$$

and ψ is a variable angular parameter.
From the intersection condition between the normal at the trochoidal curve Σ,

$$
\begin{equation*}
N_{\Sigma}[X-X(\psi)] X_{\psi}^{\prime}+[Y-Y(\psi)] Y_{\psi}^{\prime}=0, \tag{39}
\end{equation*}
$$

and the circle of radius $R_{r p} \equiv R$:

$$
C_{1} \left\lvert\, \begin{align*}
& X=R_{r p} \cdot \cos \varphi ; \tag{40}\\
& Y=R_{r p} \cdot \sin \varphi,
\end{align*}\right.
$$

one can obtain the theoretical enwrapping condition

Fig. 5 - Trochoidal profile associated with the rolling centrodes couple
Equations (4), (37) and (41) represent the theoretical profile of the rack-gear reciprocally
enveloping with the trochoidal profile.
For the arc $A D$ on the trochoidal curve, the enwrapping condition using approximation polynomials for the tool's profile is summarized in table 6 , for 4 points known on the profile.

Table 6. Points belongs to the trochoid profile; enwrapping conditions

θ	λ	Primary profile	Enwrapping condition
$\theta_{\text {A }}$	0	$\begin{aligned} & X_{A}=r \cdot \cos \left(\theta_{A}+\psi_{A}\right)- \\ & -(R+r) \cdot \cos \psi_{A} \\ & Y_{A}=-r \cdot \sin \left(\theta_{A}+\psi_{A}\right)+ \\ & +(R+r) \cdot \sin \psi_{A} \\ & \theta_{A}=\frac{R}{r} \psi_{A} \end{aligned}$	$\varphi_{A}=\psi_{A}$
$\theta_{\text {B }}$	$\frac{1}{3}$	$\begin{aligned} & X_{B}=r \cdot \cos \left(\theta_{B}+\psi_{B}\right)- \\ & -(R+r) \cdot \cos \psi_{B} \\ & Y_{B}=-r \cdot \sin \left(\theta_{B}+\psi_{B}\right)+ \\ & +(R+r) \cdot \sin \psi_{B} \\ & \theta_{B}=\frac{R}{r} \psi_{B} \\ & \psi_{B}=\psi_{A}+\frac{\left\|\psi_{D}\right\|-\left\|\psi_{A}\right\|}{3} \end{aligned}$	$\varphi_{B}=\psi_{B}$
θ_{C}		$\begin{aligned} & X_{C}=r \cdot \cos \left(\theta_{C}+\psi_{C}\right)- \\ & -(R+r) \cdot \cos \psi_{C} \\ & Y_{C}=-r \cdot \sin \left(\theta_{C}+\psi_{C}\right)+ \\ & +(R+r) \cdot \sin \psi_{C} \\ & \theta_{C}=\frac{R}{r} \psi_{C} \\ & \psi_{C}=\psi_{A}+2 \frac{\left\|\psi_{D}\right\|-\left\|\psi_{A}\right\|}{3} \end{aligned}$	$\varphi_{C}=\psi_{C}$
$\theta_{\text {D }}$	1	$\begin{aligned} & X_{D}=r \cdot \cos \left(\theta_{D}+\psi_{D}\right)- \\ & -(R+r) \cdot \cos \psi_{D} \\ & Y_{D}=-r \cdot \sin \left(\theta_{D}+\psi_{D}\right)+ \\ & +(R+r) \cdot \sin \psi_{D} \\ & \theta_{D}=\frac{R}{r} \psi_{D} \end{aligned}$	$\varphi_{D}=\psi_{D}$

Note: The calculation of points belonging to the approximated rack-gear profile is identical with the calculations presented in table 4.

6. Numerical examples

We start with a very simple rack-gear example to illustrate the methodology. In figure 6, a straight line profile to be generated is shown. The profile is determined by points $A[10 ; 51.029] ; B[10 ; 59.160]$, associated with a circular centrode with radius $R_{r p}=60 \mathrm{~mm}$.

b).

Fig. 6. Linear profile example
In the tables below, the numerical coordinates of the rack-gear profile obtained using a classical analytical method and the coordinates of the same tool obtained using the method outlined above are shown. In table 7, a $2^{\text {nd }}$ order polynomial was used while in table 8 we show the results obtained using a $3^{\text {rd }}$ order polynomial.
The error value defined according to equation (25) and also depicted in figure 6 is presented in these
two tables. The maximum error value of the approximated profile with respect to the theoretical one is $e_{\text {max }}=0.018589 \mathrm{~mm}$ for the approximation with a $2^{\text {nd }}$ degree polynomial and $e_{\text {max }}=0.006 \mathrm{~mm}$ for the approximation with a $3^{\text {rd }}$ degree polynomial.

Table 7. Comparative results: approximated by $2^{\text {nd }}$ degree polynomial and "theoretical" rack-gear profile for generation of the straight line profile

Approximated tool profile			Theoretical tool profile		Error [mm]
λ	$\xi[\mathrm{mm}]$	$\eta[\mathrm{mm}]$	ξ [mm]	$\eta[\mathrm{mm}]$	
0.0	0.0008	10.0470	0.0008	10.0470	0.0000
	0.4415	10.1417	0.4394	10.1300	0.0119
	0.9277	10.2564	0.9295	10.2397	0.0167
	N	N	N	N	N
	4.2687	11.3152	4.2757	11.3125	0.0075
	4.8623	11.5497	4.8612	11.5469	0.0031
0.5	5.4496	11.7946	5.4496	11.7946	0.0000
	6.0417	12.0541	6.0399	12.0551	0.0020
	6.6270	12.3229	6.6313	12.3279	0.0066
	,	N	N	N	N
	10.1751	14.1963	10.1721	14.1953	0.0032
	10.7558	14.5404	10.7574	14.5416	0.0020
1.0	11.3405	14.8970	11.3405	14.8970	0.0000

Table 8. Comparative results: approximated by $3^{\text {rd }}$ degree polynomial and "theoretical" rack-gear profile for generation of the straight lined profile

Approximated tool profile			Theoretical tool profile		Error [mm]
λ	ξ [mm]	η [mm]	ξ [mm]	η [mm]	
0.0	0.0008	10.0470	0.0008	10.0470	0.0000
	0.4436	10.1314	0.4394	10.1300	0.0045
	0.9316	10.2400	0.9295	10.2397	0.0022
	N	N	N	N	N
	2.5489	10.6963	2.5507	10.6980	0.0024
	3.1146	10.8853	3.1186	10.8872	0.0044
0.333	3.4978	11.0208	3.4978	11.0208	0.0000
	3.6911	11.0914	3.6943	11.0923	0.0033
	4.2768	11.3140	4.2757	11.3125	0.0019
	N	N	N	N	N
	6.6353	12.3310	6.6313	12.3279	0.0050
	7.2211	12.6117	7.2232	12.6123	0.0022
0.666	7.4125	12.7058	7.4125	12.7058	0.0000
	7.8194	12.9094	7.8149	12.9080	0.0047
	8.4048	13.2117	8.4060	13.2145	0.0031
	N	N	N	N	N
	10.1775	14.1942	10.1721	14.1953	0.0055
	10.7573	14.5385	10.7574	14.5416	0.0031
1.0	11.3405	14.8970	11.3405	14.8970	0.0000

Since in all cases the error is less than 0.01 mm , one can conclude that this new method is accurate enough.

Consider now the case of a rack-gear tool to generate a circular arc $A D$ ($A B$ for 3 points approximation) with radius $r=25 \mathrm{~mm}$ and ends points at $A[-90 ; 1.5], \mathrm{D}[-75 ; 15]$ for the 4 points approximation and $A[-90 ; 1.5], \mathrm{B}[-75 ; 15]$ for the 3 points approximation. In figure 7 and tables 9 and 10 , we show the shapes and coordinates of rack-gear tool's profile reciprocally enveloping with a circular arc associated with a circular centrode with radius $R_{r p}=81.22 \mathrm{~mm}$.

a).

Table 9 . Comparative results: approximation by $2^{\text {nd }}$ degree polynomial and "theoretical" rack-gear profile for generation of the circular arc profile

Approximated tool profile				Theoretical tool profile	Error $[\mathbf{m m}]$
λ	$\xi[\mathbf{m m}]$	$\eta[\mathbf{m m}]$	$\xi[\mathbf{m m}]$	$\eta[\mathbf{m m}]$	
$\mathbf{0 . 0}$	$\mathbf{- 8 . 6 9 2 0}$	$\mathbf{1 . 7 6 7 5}$	$\mathbf{- 8 . 6 9 2 0}$	$\mathbf{1 . 7 6 7 5}$	$\mathbf{0 . 0 0 0 0}$
	-8.2564	2.6204	-8.2625	2.6146	0.0084
	-7.7998	3.4473	-7.8073	3.4447	0.0080
	N	N	N	N	N
	-4.5254	8.1176	-4.5350	8.1187	0.0098
	-3.8950	8.8490	-3.9044	8.8454	0.0101
$\mathbf{0 . 5}$	$\mathbf{- 3 . 2 5 1 4}$	$\mathbf{9 . 5 5 6 8}$	$\mathbf{- 3 . 2 5 1 4}$	$\mathbf{9 . 5 5 6 8}$	$\mathbf{0 . 0 0 0 0}$
	-2.5821	10.2562	-2.5741	10.2560	0.0080
	-1.8871	10.9471	-1.8711	10.9448	0.0161
	N	N	N	N	N
	2.9862	15.0334	2.9987	14.9979	0.0376
	3.9409	15.7154	3.9623	15.7015	0.0255
$\mathbf{1 . 0}$	$\mathbf{4 . 9 8 3 5}$	$\mathbf{1 6 . 4 2 6 0}$	$\mathbf{4 . 9 8 3 5}$	$\mathbf{1 6 . 4 2 6 0}$	$\mathbf{0 . 0 0 0 0}$

Table 10. Comparative results: approximated by $3^{\text {rd }}$ degree polynomial and "theoretical" rack-gear profile for generation of the circle arc profile

Approximated tool profile			Theoretical tool profile		Error [mm]
λ	ξ [mm]	η [mm]	ξ [mm]	η [mm]	
0.0	-8.6920	1.7675	-8.6920	1.7675	0.0000
	-8.2537	2.6154	-8.2625	2.6146	0.0088
	-7.7983	3.4402	-7.8073	3.4447	0.0101
	N	N	N	N	N
	-5.7268	6.6157	-5.7236	6.6227	0.0078
0.333	-5.3406	7.1248	-5.3406	7.1248	0.0000
	-5.1433	7.3769	-5.1404	7.3794	0.0038
	N	N	N	N	N
	-1.8709	10.9466	-1.8711	10.9448	0.0018
	-1.1463	11.6208	-1.1423	11.6241	0.0052
0.666	-0.9032	11.8401	-0.9032	11.8401	0.0000
	-0.3912	12.2914	-0.3850	12.2972	0.0085
	0.3956	12.9600	0.4034	12.9668	0.0104
	N	N	N	N	N
	2.9940	14.9969	2.9987	14.9979	0.0048
	3.9586	15.7011	3.9623	15.7015	0.0038
1.0	4.9835	16.4260	4.9835	16.4260	0.0000

b).

Fig. 7. Circular arc profile

Fig. 8. Involute arc profile

The approximated profiles were determined based on the specified methodology for approximating polynomials of $2^{\text {nd }}$ and $3^{\text {rd }}$ degree. The maximum error for a $3^{\text {rd }}$ degree approximation polynomial is smaller then 0.0137 mm . The two profiles (theoretical and approximated) are quite close to each other.

Last example considers the case of generating an involute arc with a rack-gear tool. In table 11, we show the rack-gear tool's profile determined by an analytical method and by approximation with a $3^{\text {rd }}$ degree polynomial for the generation of an involute arc for $A[0 ;-164.44], R_{b}=164.44 \mathrm{~mm}$, $R_{e}=185 \mathrm{~mm}$ and $R_{r p}=175 \mathrm{~mm}$ (the teethed wheel profile for $m=5 \mathrm{~mm}$ and $z=35$ teeth). The maximum error of the approximated profile regarding the theoretical one is
$e r r_{M A X}=0.016425 \mathrm{~mm}$.

Table 11. Rack-gear profile; comparative result approximated by $3^{\text {rd }}$ degree polynomial and theoretical involute arc profile

Approximated tool profile			Theoretical tool profile		Error [mm]
λ	ξ [mm]	η [mm]	ξ [mm]	η [mm]	
0.0	20.3656	-4.8042	20.3656	-4.8042	0.0000
	14.0151	-2.4920	14.0155	-2.4922	0.0004
	11.3505	-1.5219	11.3363	-1.5167	0.0151
	N	N	N	N	N
	2.1557	1.8258	2.1514	1.8274	0.0046
	1.0261	2.2371	1.0387	2.2325	0.0133
0.5	-0.0129	2.6154	-0.0129	2.6154	0.0000
	-1.0207	2.9823	-1.0132	2.9796	0.0080
	-1.9668	3.3268	-1.9698	3.3279	0.0032
	N	N	N	N	N
	-7.0195	5.1664	-7.0132	5.1642	0.0066
	-7.7641	5.4375	-7.7596	5.4359	0.0048
1.0	-8.4871	5.7007	-8.4871	5.7007	0.0000

The maximum error of approximated profile corresponds to a high quality precision of the gear.

7. Conclusions

In this paper we have developed a methodology to represent the enwrapping profiles determined according to the fundamental laws of surfaces enveloping by using an approximate description of the enveloping profile via Bezier polynomials. The method was applied for the generation of surfaces associated with a couple of rolling centrodes (such as a rack-gear generating tool) starting from a very limited number of points along the profile to be generated.

Specific examples were presented for elementary profiles such as straight line segments, circular arcs and involute arc which can be used as building blocks for complex profiles of "teethed" pieces used in technical applications such as large side mills, gears, and splined shafts. The numerical examples show that the errors of the approximated profiles are small enough to be acceptable. In
general, if the degree of the approximating Bezier polynomial increases, the profile approximation precision will increase.

The proposed method is quite economical. Using a small number of points on the workpiece profile (3 or 4 points) leads to approximation errors that are within engineering tolerances for most practical applications.

The method may be applied when points on the profile to be generated are known using 3D measuring machines.

The proposed method can be applied for others cases of generation by enveloping such as generation with gear-shape cutter tool or with rotary cutter tool.

References:

[1] Litvin, F. L. (1984) Theory of Gearing. Reference Publication 1212, NASA, Scientific and Technical Information Division, Washington D.C.;
[2] Litvin, F. L., Fuentes, A., Gonzales-Perez, I., Carnevali, L., Sep, T. New version of Novicov-Wildhaber helical gears: Computerized design, simulation of meshing and stress analysis;
[3] Favrolles, J. P. (1998) Les surfaces complexes. Hermes, ISBN 2-86601-675.a;
[4] Huston, R., Mavriplis, D., Oswald, F., Liu, Y. S. (1994) A basis for solid modeling of gear teeth with application in design manufacture. In: Mechanism and Machine Theory, vol. 29, Issue 5, July, , pag. 710-723;
[5] Oancea, N. (1996) Méthode numérique pour l'étude des surfaces enveloppes. Mechanism and Machine Theory, vol. 31, no. 7, pag. 957-972;
[6] Oancea, N. (2004) Surface generation through winding, Volume II, Complementary Theorems. "Dunărea de Jos" University publishing house, ISBN 973-627-106-4, ISBN 973-627-107-6;
[7] Radzevich S. P. (2008) Kinematic Geometry of Surface Machining. CRC Press ISBN 978-1-4200-6340;
[8] Teodor, V., Oancea, N., Dima, M. (2006) Tool's profiling by analytical methods. "Dunărea de Jos" University publishing house, ISBN (10) 973-627-333-4, ISBN (13) 978-973-627-333-9.

