IDEI PN-II-ID-PCE-2007-1

Proiect Nr: ID-653

Proiect title: DEVELOPMENT OF A NEW CONCEPT FOR MANUFACTURING MACHINE

CONTROL - HOLARHIC ATTRIBUTIVE CONTROL

Objectives, activities and degree of Accomplishment

An *		Objectives	Activities	Degree of Accomplishment
2007	1	Development of the concept of control using the holarhic attributive model and unsupervised online learning	Building general model of the holarchic-atributive model for machine tool Development of the algorithm for unsupervised learning and applying to control of machine tools Integration of the model and of the algorithm in the holarchic-attributive control concept by unsupervised learning	
2008	2	The conceiving of a new method of rapid reconfiguration of the machine's numerical control system	numerical control system Conceiving of a new high language for the development of the machine-program Method simulation	Achieved Achieved
	3	Development of a programming system based on tasks	Development of an interpreter based on the developed method and application to machine tool prototype Conceiving of an conversion algorithm for command the machine tool	Achieved Achieved

			Development of a high level	Achieved
			task based programming	r terrie v ed
			language.	
			Method analysing by	Achieved
			simulating in case of turning	Acineved
			processes	
			Implementation of the new	Achieved
			algorithm and of the language	Acineved
			in the machine tool	
			architecture	
F		Conceiving online forecast and	Building of a online	Achieved
		compensation techniques for the	_	Acmeved
		machining errors	modelling the rellation	
			between processing error and	
			state values of the machine	
			tools	
			Experimental research	Achieved
	4		concerning method	racine ved
			application in case of	
			machining errors prediction	
			Development of an online	Achieved
			prediction and compensation	racine ved
			system and the application to	
			machine tool prototype	
		Development of a system for	Experimental research	Achieved
		online stability control	concerning Liapunov	r terrie ved
2009		onine stability control	exponent and and stability	
			reserve	
			Identification of a indicator	Achieved
	5		for online evaluation of	r terrie v ed
			stability reserve	
			Building of the experimental	Achieved
			of stabilty control to machine	r reme ved
			tool prototype	
		Development of a system for	Conceiving of a new	Achieved
		1 7	economic modelling	
		process intensity	technique to machine tools	
			Development of monitoring	Achieved
			system for energy monitoring	
	6		Conceiving and application to	Achieved
			the machine tool prototype of	
			the algorithm system for	
			adaptive optimal control for	
			the process intensity	
			the process intensity	

		Davidonment of a mintural	Conssiving a stranithm for	Achieved
		Development of a virtual	Conceiving a algorithm for	Acmeved
		programming and machining	trajectory function of task to	
		system	be achieved.	
			Development of a software	Achieved
	7		for algorithm implementation	
			Implementation of the	Achieved
			algorithm in the control	
			system architecture of	
			machine tool prototype	
		Providing predictability by	Identification of the model	Achievement in progress
		synthetic modeling of the	classes to describe rellation	
		machine operation	between machine processing	
		-	task and the level of energy	
			consumption	
			Development of a synthetic	Achievement in progress
	8		modelling of machine tool	
			processing based on	
			unsupervised learning	
			techniques	
			Experimental testing of	Achievement in progress
• • • •			modelling procedure	r · · · · · · · · · · · · · · · · · · ·
2010			performance	
		The pilot implementation for the	ц	Achievement in progress
		adaptive-optimal control system		
		for an experimental numerical	attributive control system by	
		controlled lathe	online unsupervised learning	
			Testing of the machine tool	Achievement in progress
	9		for validation of the new	
			concept	
			Comparative evaluation of	Achievement in progress
			machine tool performance to	1 0
			classic machine tool	
			performance	
L		l .	il.	i .